REFERENCES
Reversing Chronic Kidney Diseasewith Niacin and Sodium Bicarbonate
By: Stephen McConnell and W. Todd Penberthy
Orthomolecular Medicine News Service
Complete References
1. Kidney Disease Statistics for the United States. NIDDK.
National Institute of Diabetes and Digestive and Kidney
Diseases. https://www.niddk.nih.gov/health-
information/health-statistics/kidney-disease
2. National Center for Health Statistics (2021) Deaths and Mortality. FastStats.
https://www.cdc.gov/nchs/fastats/deaths.htm.
3. US Renal Data System. (2018) Chapter 1: Incidence, Prevalence, Patient Characteristics, and
Treatment Modalities. 2:291-331.
https://www.usrds.org/media/1736/v2_c01_incprev_18_usrds.pdf
4. Ketteler M, Block GA, Evenepoel P, et al. (2018) Diagnosis, Evaluation, Prevention, and
Treatment of Chronic Kidney Disease - Mineral and Bone Disorder: Synopsis of the Kidney
Disease: Improving Global Outcomes 2017 Clinical Practice Guideline Update. Ann Intern Med
168:422-430. https://pubmed.ncbi.nlm.nih.gov/29459980
5. Eto N, Miyata Y, Ohno H, Yamashita T. (2005) Nicotinamide prevents the development of
hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats
with adenine-induced renal failure. Nephrology Dialysis Transplantation 20:1378-1384.
https://pubmed.ncbi.nlm.nih.gov/15870221
6. Katai K, Tanaka H, Tatsumi S, et al. (1999) Nicotinamide inhibits sodium-dependent
phosphate cotransport activity in rat small intestine. Nephrology Dialysis Transplantation 14:
1195-1201 (1999). https://pubmed.ncbi.nlm.nih.gov/10344361
7. Fouque D, Vervloet M, Ketteler M. (2018) Targeting Gastrointestinal Transport Proteins to
Control Hyperphosphatemia in Chronic Kidney Disease. Drugs 78:1171-1186.
https://pubmed.ncbi.nlm.nih.gov/30022383
8. Berns JS. (2008) Niacin and Related Compounds for Treating Hyperphosphatemia in Dialysis
Patients. Semin Dial 21:203-205. https://pubmed.ncbi.nlm.nih.gov/18363600
9. Park CW. (2013) Niacin in patients with chronic kidney disease: Is it effective and safe?
Kidney Research and Clinical Practice 32:1-2. https://pubmed.ncbi.nlm.nih.gov/26889431
10. Kang HJ, Kim DK, Lee SM, et al. (2013) Effects of low-dose niacin on dyslipidemia and
serum phosphorus in patients with chronic kidney disease. Kidney Research and Clinical
Practice 32:21-26. https://pubmed.ncbi.nlm.nih.gov/26889433Reversing Chronic Kidney Disease with Niacin and Sodium Bicarbonate
References
Complete References Townsendletter.com Subscribe Today!
11. Taketani Y, Masuda M, Yamanaka-Okumura H, et al. (2015) Niacin and Chronic Kidney
Disease. Journal of Nutritional Science and Vitaminology, J Nutr Sci Vitaminol 61:S173-S175.
https://pubmed.ncbi.nlm.nih.gov/26598845
12. Cheng SC, Young DO, Huang Y, Delmez JA, Coyne DW. (2008) A Randomized, Double-
Blind, Placebo-Controlled Trial of Niacinamide for Reduction of Phosphorus in Hemodialysis
Patients. Clin J Am Soc Nephrol. 3:1131-1138. https://pubmed.ncbi.nlm.nih.gov/18385391
13. Charnow JA (2014) Niacin May Slow Chronic Kidney Disease (CKD) Progression. Renal
and Urology News. https://www.renalandurologynews.com/home/conference-highlights/kidney-
week-annual-meeting/kidney-week-2014/kidney-week-2014-general-news/niacin-may-slow-
chronic-kidney-disease-ckd-progression.
14. Rao M, Steffes M, Bostom A, Ix JH. (2014) Effect of niacin on FGF23 concentration in
chronic kidney disease. Am J Nephrol 39, 484-490. https://pubmed.ncbi.nlm.nih.gov/24854458
15. Ginsberg C, Ix JH. (2016) Nicotinamide and phosphate homeostasis in chronic kidney
disease: Curr Opin Nephrol Hyperten. 25:285-291. https://pubmed.ncbi.nlm.nih.gov/27219041
16. Streja E, Kovesdy CP, Streja DA, et al. (2015) Niacin and Progression of CKD. Am J Kidney
Dis. 65:785-798. https://pubmed.ncbi.nlm.nih.gov/25708553
17. Rennick A, Kalakeche R, Seel L, Shepler B. (2013) Nicotinic Acid and Nicotinamide: A
Review of Their Use for Hyperphosphatemia in Dialysis Patients. Pharmacotherapy. 33:683-690.
https://pubmed.ncbi.nlm.nih.gov/23526664
18. Khalid SA, Inayat F, Tahir MK, et al. (2019) Nicotinic Acid as a Phosphate-lowering Agent
in Patients with End-stage Renal Disease on Maintenance Hemodialysis: A Single-center
Prospective Study. Cureus 11:e4566. https://pubmed.ncbi.nlm.nih.gov/31281749
19. Shimoda K, Akiba T, Matsushima T, et al. (1998) [Niceritrol decreases serum phosphate
levels in chronic hemodialysis patients]. Nihon Jinzo Gakkai Shi 40:1-7.
https://pubmed.ncbi.nlm.nih.gov/9513376
20. Zeman M, Vecka M, Perlík F, et al. (2016) Pleiotropic effects of niacin: Current possibilities
for its clinical use. Acta Pharm, 66:449-469. https://pubmed.ncbi.nlm.nih.gov/27749252
21. Zhang Y, Ma T, Zhang, P. (2018) Efficacy and safety of nicotinamide on phosphorus
metabolism in hemodialysis patients: A systematic review and meta-analysis. Medicine, 97:
e12731. https://pubmed.ncbi.nlm.nih.gov/30313075
22. Vasantha J, Soundararajan P, Vanitharani N, et al. (2011) Safety and efficacy of
nicotinamide in the management of hyperphosphatemia in patients on hemodialysis. Indian J
Nephrol. 21:245-249. https://pubmed.ncbi.nlm.nih.gov/22022084
23. Lenglet A, Liabeuf S, El Esper N, et al. (2017) Efficacy and safety of nicotinamide in
haemodialysis patients: the NICOREN study. Nephrol Dial Transplant. 32:870-879.
https://pubmed.ncbi.nlm.nih.gov/27190329
24. Liu X-Y, Yao J-R, Xu R, et al. (2020) Investigation of nicotinamide as more than an anti-
phosphorus drug in chronic hemodialysis patients: a single-center, double-blind, randomized,
placebo-controlled trial. Ann Transl Med. 8:530. https://pubmed.ncbi.nlm.nih.gov/32411753
25. El Borolossy R, El Wakeel LM, El Hakim I, Sabri, N. (2016) Efficacy and safety of
nicotinamide in the management of hyperphosphatemia in pediatric patients on regular
hemodialysis. Pediatr Nephrol. 31:289-296. https://pubmed.ncbi.nlm.nih.gov/26420678
26. Ketteler M, Wiecek A, Rosenkranz AR, et al. (2021) Efficacy and Safety of a Novel
Nicotinamide Modified-Release Formulation in the Treatment of Refractory HyperphosphatemiaReversing Chronic Kidney Disease with Niacin and Sodium Bicarbonate
References
Complete References Townsendletter.com Subscribe Today!
in Patients Receiving Hemodialysis--A Randomized Clinical Trial. Kidney Int Rep. 6:594-604.
https://pubmed.ncbi.nlm.nih.gov/33732974
27. Raines NH, Ganatra S, Nissaisorakarn P, et al. (2021) Niacinamide May Be Associated with
Improved Outcomes in COVID-19-Related Acute Kidney Injury: An Observational Study. Am
Soc of Nephrol. Kidney360. https://kidney360.asnjournals.org/content/2/1/33.
28. Takahashi Y, Tanaka A, Nakamura T, et al. (2004) Nicotinamide suppresses
hyperphosphatemia in hemodialysis patients. Kidney International. 65:1099-1104.
https://www.kidney-international.org/article/S0085-2538(15)49804-7/fulltext.
29. Sampathkumar K (2016) Niacin for phosphate control: A case of David versus Goliath.
Indian J Nephrol. 26:237-238. https://pubmed.ncbi.nlm.nih.gov/27510758
30. Sampathkumar K, Selvam M, Sooraj YS, et al. (2006) Extended release nicotinic acid - a
novel oral agent for phosphate control. Int Urol Nephrol 38:171-174.
https://pubmed.ncbi.nlm.nih.gov/16502077
31. Edalat-Nejad M, Zameni F, Talaiei A. (2012) The effect of niacin on serum phosphorus
levels in dialysis patients. Indian J Nephrol 22:174-178 .
https://pubmed.ncbi.nlm.nih.gov/23087550
32. Shin S, Lee S. (2014) Niacin as a drug repositioning candidate for hyperphosphatemia
management in dialysis patients. Ther Clin Risk Manag. 10:875-883.
https://pubmed.ncbi.nlm.nih.gov/25342908
33. Zahed NS, Zamanifar N, Nikbakht H. (2016) Effect of low dose nicotinic acid on
hyperphosphatemia in patients with end stage renal disease. Indian J Nephrol 26:239-243.
https://pubmed.ncbi.nlm.nih.gov/27512294
34. Ralto KM, Rhee EP, Parikh SM. (2020) NAD+ homeostasis in renal health and disease. Nat
Rev Nephrol. 16:99-111. https://pubmed.ncbi.nlm.nih.gov/31673160
35. Palmer BF, Alpern RJ. (2003) Treating dyslipidemia to slow the progression of chronic renal
failure. Am J Med. 114:411-412 (2003). https://pubmed.ncbi.nlm.nih.gov/12714133
36. Cho K, Kim H, Rodriguez-Iturbe B, Vaziri ND. (2009) Niacin ameliorates oxidative stress,
inflammation, proteinuria, and hypertension in rats with chronic renal failure. American Journal
of Physiology-Renal Physiology 297:F106-F113. https://pubmed.ncbi.nlm.nih.gov/19420110
37. Owada A, Suda S, Hata T. (2003) Antiproteinuric effect of niceritrol, a nicotinic acid
derivative, in chronic renal disease with hyperlipidemia: a randomized trial. Am J Med 114:347-
353. https://pubmed.ncbi.nlm.nih.gov/12714122
38. Burge NJ. (2017) Association of Niacin on Phosphate Control in Advanced-Stage Chronic
Kidney Disease Patients within a VA Population.
https://www.semanticscholar.org/paper/Association-of-Niacin-on-Phosphate-Control-in-a-VA-
Burge/988840c5343630c2e2319a85b4c05b61ecf75362.
39. Zhen X, Zhang S, Xie F, et al. (2021) Nicotinamide Supplementation Attenuates Renal
Interstitial Fibrosis via Boosting the Activity of Sirtuins. Kidney Dis (Basel) 7:186-199.
https://pubmed.ncbi.nlm.nih.gov/34179114
40. Müller D, Mehling H, Otto B, et al. (2007) Niacin lowers serum phosphate and increases
HDL cholesterol in dialysis patients. Clin J Am Soc Nephrol 2:1249-1254.
https://pubmed.ncbi.nlm.nih.gov/17913971
41. Liu D, Wang X, Kong L, Chen Z. (2014) Nicotinic Acid Regulates Glucose and Lipid
Metabolism Through Lipid Independent Pathways. Curr Pharm Biotechno. 16:3-10.
https://pubmed.ncbi.nlm.nih.gov/25429652Reversing Chronic Kidney Disease with Niacin and Sodium Bicarbonate
References
Complete References Townsendletter.com Subscribe Today!
42. Small C, Kramer HJ, Griffin KA, et al. (2017) Non-dialysis dependent chronic kidney
disease is associated with high total and out-of-pocket healthcare expenditures. BMC Nephrol
18:3. https://pubmed.ncbi.nlm.nih.gov/28056852
43. Golestaneh L, Alvarez PJ, Reaven NL, et al. (2017) All-cause costs increase exponentially
with increased chronic kidney disease stage. Am J Manag Care 23:S163-S172.
https://pubmed.ncbi.nlm.nih.gov/28978205
44. Dharnidharka, V. R., Kwon, C. & Stevens, G. (2002) Serum cystatin C is superior to serum
creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 40:221-226.
https://pubmed.ncbi.nlm.nih.gov/12148093
45. Grubb A. (2017) Cystatin C is Indispensable for Evaluation of Kidney Disease. EJIFCC
28:268-276 . https://pubmed.ncbi.nlm.nih.gov/29333146
46. Finn WF (1961-2011) PubMed, see: https://pubmed.ncbi.nlm.nih.gov/?term=finn+wf
47. Shang D, Xie Q, Ge X, et al. (2015) Hyperphosphatemia as an independent risk factor for
coronary artery calcification progression in peritoneal dialysis patients. BMC Nephrol 16:107.
https://pubmed.ncbi.nlm.nih.gov/26187601
48. Felsenfeld AJ, Levine BS, Rodriguez M. (2015) Pathophysiology of Calcium, Phosphorus,
and Magnesium Dysregulation in Chronic Kidney Disease. Semin Dial 28:564-577.
https://pubmed.ncbi.nlm.nih.gov/26303319
49. Monckeberg's arteriosclerosis. Wikipedia (2020).
https://en.wikipedia.org/wiki/Monckeberg%27s_arteriosclerosis
50. de Brito-Ashurst, I, Varagunam M, Raftery MJ, Yaqoob MM. (2009) Bicarbonate
supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol
20:2075-2084. https://pubmed.ncbi.nlm.nih.gov/19608703
51. Brauser D (2010) Baking Soda May Slow Progression of Chronic Kidney Disease.
Medscape. http://www.medscape.com/viewarticle/706043.
52. Kumakura S, Sato E, Sekimoto A, et al. (2021) Nicotinamide Attenuates the Progression of
Renal Failure in a Mouse Model of Adenine-Induced Chronic Kidney Disease. Toxins (Basel)
13:50. https://pubmed.ncbi.nlm.nih.gov/33440677
53. Hussain S.Singh A, Alshammari TM, et al. (2020) Nicotinamide Therapy in Dialysis
Patients: A Systematic Review of Randomized Controlled Trials. Saudi J Kidney Dis Transpl
31:883-897. https://pubmed.ncbi.nlm.nih.gov/33229753
54. He YM, Feng L, Huo D-M, Yang Z-H, Liao Y-H. (2014) Benefits and harm of niacin and its
analog for renal dialysis patients: a systematic review and meta-analysis. Int Urol Nephrol
46:433-442. https://pubmed.ncbi.nlm.nih.gov/24114284
55. Faivre A, Katsyuba E, Verissimo T, et al. (2021) Differential role of nicotinamide adenine
dinucleotide deficiency in acute and chronic kidney disease. Nephrol Dial Transplant 36, 60-68 .
https://pubmed.ncbi.nlm.nih.gov/33099633
56. Hasegawa, K. (2019)cNovel tubular--glomerular interplay in diabetic kidney disease
mediated by sirtuin 1, nicotinamide mononucleotide, and nicotinamide adenine dinucleotide
Oshima Award Address 2017. Clin Exper Nephrol 23:987-994.
https://pubmed.ncbi.nlm.nih.gov/30859351
57. Hasegawa, K. Wakino S, Sakamaki Y, et al. (2016) Communication from Tubular Epithelial
Cells to Podocytes through Sirt1 and Nicotinic Acid Metabolism. Curr Hypertens Rev 12:95-
104. https://pubmed.ncbi.nlm.nih.gov/26931474Reversing Chronic Kidney Disease with Niacin and Sodium Bicarbonate
References
Complete References Townsendletter.com Subscribe Today!
58. Ilkhani F, Hosseini B, Saedisomeolia A (2016) Niacin and Oxidative Stress: A Mini-Review.
J Nutri Med Diet Care. 2:014. https://clinmedjournals.org/articles/jnmdc/journal-of-nutritional-
medicine-and-diet-care-jnmdc-2-014.php
59. Lenglet A, Liabeuf S, Guffroy P, et al. (2013) Use of Nicotinamide to Treat
Hyperphosphatemia in Dialysis Patients. Drugs R D 13:165-173.
https://pubmed.ncbi.nlm.nih.gov/24000048
60. Matthews DR, Hosker JP, Rudenski AS, et al. (1985) Homeostasis model assessment: insulin
resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
Diabetologia, 28:412-419. https://pubmed.ncbi.nlm.nih.gov/3899825
61. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling Diabetes
Care 27:1487-1495. https://pubmed.ncbi.nlm.nih.gov/15161807
62. Editorial (2018) Making more of multimorbidity: an emerging priority. The Lancet.
391:1637 https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)30941-3/fulltext.
63. Arias E, Heron M, Tejada-Vera B. (2013) United States life tables eliminating certain causes
of death, 1999-2001. Natl Vital Stat Rep 61:1-128. https://pubmed.ncbi.nlm.nih.gov/24968617
64. Canner PL, Berge KG, Wenger NK, et al. (1986) Fifteen year mortality in Coronary Drug
Project patients: long-term benefit with niacin. J Am Coll Cardiol 8:1245-1255.
https://pubmed.ncbi.nlm.nih.gov/3782631
Orthomolecular Medicine News Service free subscription link
http://orthomolecular.org/subscribe.html and the OMNS archive link
http://orthomolecular.org/resources/omns/index.shtml